Deutsch English
Isolab GmbH

Home
Methoden
Wir über uns
Anfrage
News
Literatur
Partner

© 2009, isolab® GmbH
Firmensitz:
Carl-Zeiss-Straße 16
D-30966 Hemmingen (Hannover)
Labor:
Laboratorium für Stabilisotopenanalytik
Woelkestr. 9/I
D-85301 Schweitenkirchen
Telefon: +49 (8444) 918842
Fax: +49 (8444) 918844

Geschäftsführer:
Dr. Victor Veciz Ara;
Dr. A. Roßmann
Amtsgericht: Hannover HRB 57728
USt-Id-Nr.: DE 201083502

Impressum
AGB
Kontakt
Disclaimer

Letzte Änderung: 18.12.2014
Diese Seite drucken

Stabilisotopenanalytik zur Herkunfts- und Authentizitätskontrolle

von

Lebensmitteln, Getränken, Aromen, Futtermitteln, Holz und Synthesechemikalien, sowie forensischen und archäologischen Proben

Lebensmittel

(Foto: Symrise GmbH & Co.KG, mit freundlicher Genehmigung Verlag Wiley-VCH, Weinheim)

Herkunft und Authentizität unserer Lebensmittel bestimmen deren Qualität und Preis; der Verbraucher verlangt mit Recht, dass diese einander entsprechen. Die Bestimmung der Verhältnisse der stabilen Isotope der Biomasse, des Wassers oder der Mineralstoffe aus Lebensmitteln kann sicherstellen, dass er nicht frisch gepressten Fruchtsaft aus Fruchtsaftkonzentrat, Bordeauxwein aus Rumänien, Parmesankäse aus bayerischer Milch, Ökoeier von Batteriehennen oder deutsches Rindfleisch aus Argentinien einkauft.

Wie kann man solche Etikettenschwindel erkennen?

Alle organischen Substanzen, damit auch unsere Lebensmittel, bestehen aus den Biolementen H, C, N, O und S. Diese kommen überall als Gemische stabiler Isotope vor. Deren Verhältnisse sind abhängig von jenen der örtlichen Primärstoffe, geologischen und klimatischen Verhältnissen und von anthropogenen Einflüssen am Ort der Entstehung. Umgekehrt kann man aus gemessenen Isotopenverhältnissen von Lebensmitteln (s.o.) auf den Ort und die Umstände von deren Herkunft und Herstellung schliessen. Da die einzelnen Elemente verschieden auf die jeweiligen Einflüsse reagieren, liefern ihre Isotopenverhältnisse mehr oder weniger unabhängige, aber sich ergänzende Informationen.


Mehr Informationen zu S und Sr Mehr Informationen zu N Mehr Informationen zu C
Mehr Informationen zu H und O

Mit freundlicher Genehmigung: dmz 21 18-23 (2003)

Isotopenverhältnise werden relativ zu internationalen Standards in der δ-Wert-Skala ausgedrückt, z.B. für die Kohlenstoff-Isotope: (Standard V-PDB = Vienna Pee-Dee-Belemnit)

δ13C[‰]V-PDB= links (13C/12C)PROBE  -1 rechts  *1000
———————
(13C/12C)V-PDB

δ13C-Werte ([‰]V-PDB) von Biomasse - Photosynthesetyp der Pflanzen

Der Kohlenstoff-Isotopeneffekt auf die Primärreaktion der CO2-Assimilation ist für den δ13C-Wert der Biomasse verantwortlich. Bei den sog. C3-Pflanzen, den meisten unserer einheimischen Pflanzen, liegt der δ13C-Wert zwischen -30 und -25‰, bei den C4-Pflanzen (Mais, Zuckerrohr, Hirse) zwischen -14 und -11‰, bei den CAM (crassulacean acid metabolism)-Pflanzen (Ananas, Vanille) zwischen -21 und -18‰. Auf dieser Basis lässt sich der Anteil an C4-Material in pflanzlicher Biomasse bzw. im Futter von Tieren berechnen. Der jeweilig angegebene Bereich ist u.a. durch klimatische und pflanzenanatomische Besonderheiten bedingt und beinhaltet entsprechende Informationen. Tierische Produkte spiegeln die Nahrung der Tiere mit einem Trophiestufeneffekt von ca. +1.5 ‰ wieder.

Isotopenei Zur Übersicht

δ15N-Werte ([‰]AIR) von Biomasse - Stickstoffquellen

Primäres N-Reservoir für organisch gebundenen Stickstoff ist der Luftstickstoff mit δ15N = 0‰. Er ist unmittelbare N-Quelle bei der Stickstoffassimilation durch Leguminosen (Verwendung bei der Gründüngung) und für technisch gewonnenes Ammoniak und Nitrat (Verwendung bei mineralischer Düngung). Nitrifikation, Denitrifikation und Ammoniak-Verdunstung führen zur 15N-Anreicherung in den nicht umgesetzten Anteilen der entsprechenden Ausgangsstoffe. Organische Dünger und im Boden gebundener Stickstoff sind ebenfalls generell an 15N relativ angereichert; dies ist u.a. die Ursache dafür, dass Produkte aus ökologischem Anbau meist einen höheren δ15N-Wert als konventionell produzierte haben. Der Trophiestufeneffekt für tierische Produkte ist ~+2 ‰ pro Stufe.

Isotopenei Zur Übersicht

δ2H- und δ18O-Werte ([‰]V-SMOW) von Biomasse - Klima und Wasserkreislauf

Wasser ist wesentlicher Bestandteil der meisten Lebensmittel; außerdem ist es Ausgangsstoff für organisch gebundenen Wasserstoff und Sauerstoff. Aufgrund des höheren Dampfdrucks der "leichten" Wassermoleküle (1H1H16O) reichern sich diese im Dampf an, während die "schweren" Wassermoleküle (1H2H16O, 1H1H18O) im Kondensat angereichert werden. Niederschläge und Grundwasser sind infolgedessen um so leichter, je weiter entfernt vom Ozean (Kontinentaleffekt) und je höher (Höheneffekt) sie auftreten. Darüber hinaus bestimmen das lokale Klima und pflanzenanatomische Faktoren über die Wasserverdunstung der Pflanzen die H- und die O-Isotopencharakteristik des Blattwassers und damit letztlich der pflanzlichen Biomasse. Bei tierischer Biomasse sind die δ18O-Werte von Wasser durch die des Trinkwassers, der Nahrung und des Oxidationswassers beeinflusst. Die δ2H-Werte der Hauptfraktionen aus pflanzlichen und tierischen Gewebe (Kohlenhydrate, Proteine, Fette) unterscheiden sich untereinander charakteristisch auf Grund metabolischer H-Isotopenfraktionierungen.

Isotopenei Zur Übersicht

δ34S-([‰]V-CDT) und δ87Sr-Werte von Biomasse - lokale geologische Besonderheiten

δ34S-([‰]V-CDT) und δ87Sr-Werte von Biomasse gehen auf die Isotopencharakteristika der lokalen primären Quellen zurück. Im Falle von Schwefel kommen, außer Boden-SO42-, in der Nähe des Meeres SO42- aus Meeresaerosol (sea spray) und in der Nähe von Industrieanlagen und Autobahnen SO2 aus Verbrennungsprozessen hinzu. Die Zuordnung erfordert also ein entsprechendes Kataster bzw. Vergleichswerte. Ähnliches gilt auch für 87Sr und für Isotope von (anthropogen eingebrachten) Schwermetallen (Pb u.a.). Strontium ist der wichtigste Indikator für die geographische Herkunftszuordnung.

Isotopenei Zur Übersicht

[Home] [Methoden] [Wir über uns] [Anfrage] [News] [Literatur] [Partner]